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Projected fermion ground-state ansutz for the S = 1/2 Kagom6 
lattice antiferromagnet 
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t Physics Department, University of British Columbia, 6214Agriculture Road, Vancouver, 
B C  Canada V6T ZA6 
t IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge 
CB3 O W  UK 

Received 20 May 1991 

AbslrpeL We test the quality of mean field ground states for the S = 112 Heisenberg 
antifernmagnet on a Kagom6 laltice These states, motivated by the large-n saddle 
p i n t s  of Marston and Zeng, are constructed from eigenstates of single particles hopping 
on lattices with uniform, staggered or no magnetic fields and their e a  analogues. Short- 
ranp spin-spin correlations (up U) third-nearest-neighbour) are cslculaled. They are 
compared to those obtained by Zeng and ELser from small cluster diagonalization. In 
all trial states certain second- and third-neighbour mmlalions are qualitatively distinct 
from the ground state. The trial state which m a t  resembles the gmund state is the 
projected BCF state Deviations of second- and third-neighbour correlations from thwe 
of the actual gmund state do not appear lo be due to a lack of spin-Peierls order. We 
argue that more short-range threesublattice N&l order should be present. Numerical 
results suggest a specilic choice of sublattice arrangemenL We also propose specific 
changes in two-spin correlations which would be signatures of a transition from a state 
of one type to another. These may be relevant for the 2.5 mK spccific heat peak recently 
observed in helium3 films by Gre)lvall and Busch. 

1. Introduction 

The S = 1/2 Heisenberg antiferromagnet (AFM) on a frusaated lattice is a candidate 
for a two-dimensional system with a quantum spin liquid ground state. The KagomB 
lattice AFM is a simple example of such a system. Its classical (three-sublattice N6el 
ordered) ground state has a continuous, local degeneracy. This is because there exist 
clusters of sites which are in only two out of the three sublattices and which are 
surrounded by sites in the remaining sublattice. The sublattice magnetizations inside 
the cluster can then be rotated about the axis of magnetization of the thud sublattice 
without changing the classical spin energy. 

The experimental evidence that this system might be realized in nature comes 
from heat capacity measurements of Greywall and Busch [I] on thin films of 3He. 
At coverages corresponding to a partially occupied second layer of atoms, the heat 
capacity ceases to show Fermi liquid behaviour and has a peak at around 25 n K  
These experimenb have been interpreted by Elser [Z] as being due to the second layer 
forming a registered triangular solid with an anisotropic antiferromagnetic nuclear ex- 
change interaction modelled by a KagomB lattice. Further experimental insight comes 
from measurements on Sr-0-Ga-0 where the S = 3/2 C?+ ions are coordinated 
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in a Kagome lattice. These materials show a heat capacity [3] proportional to T2 
indicating a gapless, perhaps Goldstone, mode of excitation. On the other hand low- 
temperature elastic neutron scattering near momenta associated with three-sublattice 
N6el order shows only a broad maximum corresponding to a correlation length of 
a few lattice spacings [4,5]. In this paper we study only the S = 1/2 system. Our 
results may shed some light on the S = 3/2 system. 

Exact diagonalization of the S = 1/2 system on small clusters of up to 21 sites 
has been performed by Zeng and Elser [6]. The system size was too small to identify 
the form of long-range order in the ground state. Nevertheless, various short-range 
correlation functions for the ground state up to about third-nearest-neighbour are 
now available. By a Monte Carlo simulation they obtain a double peak in the heat 
capacity. Experimentally there is only one peak but only about half the entropy of 
I n 2  per spin is underneath the peak so there is probably another peak at lower 
temperature [6]. Thus there may be two ordered states which exist for the Kagomk 
AFM. Zeng and Elser have also calculated the zero-point correction to the classical 
three-sublattice Nee1 ground state by spin waves and found that long-range Nee1 order 
does not survive. Consistent with this result are the results of Chandra et al [SI who 
have proposed a novel ground state with long-range order called the spin nematic 
This state has a gapless Goldstone mode which explains the low-temperature specific 
heat in the S = 3/2 system but the long-range order would not show up in neutron 
scattering. 

In this paper we concentrate on short-range correlation functions. Our motivation 
comes from the results of a large-n study of the Kagom6 AFM. Marston and Zeng [q 
have considered a SU(n) model on the Kagomk lattice. They find that the dimer 
solid ground state is stable at large n. Such a ground state would probably have 
a gapped excitation spectrum (incompatible with the spin nematic proposal). But 
introducing a bi-quadratic coupling, which does not alter the model in the n = 2 
limit, makes the system unstable to a chiral spin liquid or ‘flux’ phase above a critical 
temperature. Other phases which do not break time reversal invariance (‘staggered 
flux’ or ‘no flux’ as defined below) were found to be higher in energy. Sachdev and 
Read [9] have considered Sp(n) models which are useful in the case of frustrated or 
doped AFMS. Under this scheme Bcs-like paired ground states can result. These are 
related to similar states considered in the case of the square lattice [1&12]. 

The purpose of this paper is not to improve on exact diagonalization results, which 
are limited to small clusters, but to check whether the mean field states considered 
by Marston and Zeng and BCS-like states are viable ground states for the infinite 
system. This we do by considering spin wavefunctions based on large-n states and 
calculating whether they reproduce the known short-range correlation functions. It is 
known that the relative energies of a valence bond solid or various spin liquid states 
in the large-n theory may be different from those when n = 2 and the constraint 
is treated exactly. Thus it is necessary to cnnstruct explicit wavefunctions for the 
S = 1/2 AFM motivated by large-n saddle points and to compare their spin-spin 
correlations including the energy. As we shall see, many states can he clearly ruled 
out as ground-state candidates and so we do not have to wony about sensitive energy 
minimization upon which the choice of long-range order in the ground state depends. 

2. The fermion projection technique 

The antiferromagnetic spin correlations of a translationally invariant projected elec- 
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tron wavefunction are dominated by the nearest-neighbour exchange holes of like-spin 
electrons [13] or the nearest-neighbour BCS pairing of opposite-spin electrons. The 
kinetic energy of a single species of fermions is intimately linked to the size of the 
nearest-neighbour exchange hole and so we may identify good fermion wavefunctions 
by their total kinetic energy. Similarly the BCS p a i i g  condensation energy is related 
to the contribution of singlet pairs to the antiferromagnetic spin correlations. The 
energy of the spin system, being a measure of the nearest-neighbour spin correlations 
only, is a poor indication of the variational quality of a wavefunction especially when 
there are low-wig excitations. Therefore, to evaluate the quality of our trial ground 
states, we compare the first-, second- and thud-neighbour spin correlations of our 
wavefunctions with the results of diagonalization on small clusters. 

In this paper we shall be interested in calculating the ground-state expectation 
(Sfs f ) .  For a projected fermion state, this expectation value can be written: 

where a,p = kl  are spin indices, me@ = a p / 4  and 

i 

is a projection operator which removes double occupancy. Tb perform numerical 
calculations on a projected state, we divide the projection operator into two pieces: 

where A and B are a partition of the lattice. B is a cluster that contains the sites i 
and j in question and A contains all other sites. The projection on set A and its 
influence on set B may be approximated crudely by a fugacity for up and down spins 
which is unity for zero magnetization [14]. Otherwise, projection on the sites of 
cluster B is performed exactly and leads effectively to a trial wavefunction for the 
antiferromagnet on cluster B. 

Projection on cluster B involves evaluating the expectation of a product of fermion 
operators in the non-interacting ground state. By Wick's theorem, this product can be 
reduced to products of single-particle correlation functions such as ($ I ci, c,. I $) 
or {$ ci, cf -~ 1 $). Such correlation functions can be determined from the single- 
particle states and their occupation. The choice of points in cluster B is one which 
includes as many near neighbours of i and j as possible. This approximation tends 
to the exact result in the l i t  of infinite cluster size but practicauy we are limited 
to cluster sizes of about 15 sites. Projection on a cluster of 12 sites with complex 
fermion correlations takes about one hour on a Sun Sparc I workstation. 

TO assess the accuracy of this approximation technique, it was applied to the 1D 
Heisenberg spin chain. The results were compared with exact analytic Gutnviller 
projection (151. We list in tables 1 and 2 the values calculated for the spin-spin 
correlation functions of the projected onedimensional Fermi sea at half filling. In 
table 1 we plot the nearest-neighbour correlation on a link as a function of distance 
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Table 1. Nearad-neighbour correlation (S:S:+,) io one dimension as a funclion of 
poaition f” the centre (n = 0) of the cluster and cluslcr size. 

Cluster size n = 0 n = l  n = 2  n = 3  n = 4  cluster avcragc 

8 -0.13914 -0.15608 -0.13713 -0.16251 - -0.15008 
9 -0,14662 -0.14980 -0.14244 -0.15772 - -0.14915 
12 -0,14169 -0.15321 -0.14110 -0.15461 -0.13825 -0.14901 
13 -0.14699 -0.14855 -0.14523 -0.15087 -0.14163 -0.14861 

Tbble 2 Averaged correlation (S;S;) BJ a function of scpanlion n in one dimension 
obfained [mm the 134le cluster. 

n = l  n = 2  n = 3  n = 4  n = J  n = 6  

Clusler mclhod -0.14861 0.05676 -0.04482 0.02994 -0.02627 0.02037 
Exact [E] -0.147373 0.056423 -0.044425 0.029686 -0.026005 0.020134 

of the link from the centre of the cluster for dieerent cluster sizes. Here clusteis 
have been chosen to be sets of contiguous sites on the onedimensional chain. In 
table 2 we tabulate longer distance correlation functions. 

The effects of finite cluster size and the breaking of translational invariance are 
apparent. We neglect projection outside the cluster and the effect of that is greatest 
at the boundary of the cluster but extends far into the middle. For example for 
the 13-site cluster the nearest-neighbour correlation oscillates about an average value 
-0.1486 compared to the exact value of -0.1474. Finite cluster size leads to 
an inequivalence between certain sites which would be equivalent in the infinite 
system. This plagues any finite-cluster analysis including extrapolation of small-cluster 
diagonalization. If we wish to estimate a certain spin-spin correlation of the infinite 
system a simple but naive fix is to average over corresponding pairs in the cluster. 
The ermr in approximating the infinite system may then be assessed by examining 
cluster size dependence. We have checked this for 8-13-site clusters in one dimension. 
Notice in table 2 that longer range spin correlations (up to sixth-neighbour) given by 
the cluster technique are accurate to within one per cent. In two dimensions fermion 
correlation functions fall off with one higher power of distance but the fraction of 
sites at the surface of a small cluster is also larger. There is evidence from the square 
lattice that the cluster expansion in two dimensions is potentially quite accurate even 
for determining correlations out to the surface of the cluster [13]. This remains true 
when the cluster size is as small as four or even two sites. We have checked that 
the average values of spin-spin correlations are independent of cluster size up to and 
including the two largest clusters presented in this paper. 

Spin correlation of a projected fermion wavefunction are usually evaluated using 
the variational Monte Carlo (mc) technique [16]. m C  is computationally intensive 
compared to the cluster method. Finite-system fermion wavefunctions are used in 
VMC and these need to be continually re-evaluated-a process that is time consuming. 
Nevertheless the projection is carried out exactly ensuring accuracy (especially) in 
long-range spin-spin correlations. The cluster method has an advantage in being 
more transparent due to its analytical foundation. The density matrix of single-particle 
correlations is determined once for the infinite system at the beginning. Although it 
is weaker on the many-body aspects of projection, the technique enables the short- 
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range correlations to be calculated quickly. In this work, we assess the projection of 
many different fermion wavefunctions with various perturbations. Using the cluster 
technique it is easy to see how changes in the fermion wavefunction affect the spin- 
spin correlations. Thus we can obtain some understanding of why a particular large-n 
mean field saddle point is good or not. 

3. The trial states 

Let us begin by describing the fermion states we project and tabulating various short- 
range correlation functions for these many-fermion states. In all cases the fermion 
state will be described by the ground state of some fermion Hamiltonian The simple 
hopping Hamiltonian 

H = ciocjo +HC 
W , o  

(where (ij) means sum over nearest neighbours) on the Kagom6 lattice has energy 
bands 

Ek = - 2  1 f d3 +  COS k,  + cos k2 + cos k3) (2) 

where k3 = - (k ,  + kz ) .  The momentum components are defined by ki = k . ii. 
Figure 1 shows the unit vectom 7;. The bands do not have particlehole symmetry. 
’RI make the no-flux preprojection state we fill the states below a chemical potential 
p -0.4715 corresponding to half filling. 

Figmm 1. Uoil veclors defined for the Kagome lattice. 

Another trial wavefunction is formed by using single-particle States in the presence 
of a staggered magnetic flux &,/4 where q5,, I hc/e  is the flux quantum. The gauge 
choice is shown in figure 2 An arrow on a link connecting site n to site m means 
that the terms in the Hamiltonian which hop electrons from site n to site m and m 
to n are multiplied by +i and -i respectively. Diagonalization leads to three energy 
bands which are the solutions to 

e: - 2(3  + cos k ,  + sin kz + sin k3)ek - 4( - sin k ,  + cos k2 + cos k3)  = 0 .  (3) 

The spectrum is particle-hole symmetric. For half filling there is a triangular Fermi 
surface at er = 0. The negative energy fermion states are tilled before projection. 
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A thud trial wavefunction corresponds to fermions hopping on a lattice with a 
uniform magnetic flux &/4. The gauge choice is given in figure 3. There are six 
energy bands which are well separated and are the solutions to 

e : -  12e4*+2e~(15+cos2k2-2cosklcosk2)-16=0.  (4) 

The lowest three are filled. In order to test robustness we also considered perturba- 
tions of this trial state which consisted of adding second-neighbour hopping of various 
magnitudes and phases. 

Figure 2. Gauge choice for the staggered flux Hamiltonian. pvx/$ 
”... ... .... ’.. 

...* ’.... 
7 ,  

-.. 

Figurr 3. Gauge choicc and mil v e s t o ~ ~  for the uniform flux Hamiltonian. 

A second class of trial wavefunctions are the projected BCS wavefunctions. Afileck 
et ai [17] exploited a local SU(2) gauge invariance to show that on a bipartite lattice 
a projected BCS state is identical to some projected nOn-BCS state. However, this 
cannot be done on a frusuated lattice and the projected BCS states are distinct from 
nOn-BCT ones. The simplest BCS state is the ground state of 

We considered BCS states with an amplitude modulation (spin-Peierls perturba- 
tion) or various arrangements of a non-trivial phase ic1,c; + H C  The latter was 
motivated by analogy to the ‘s + id’ phase of Kotliar (111 h e  spin-Peierls pertur- 
bations were chosen to enhance the singlet pair amplitude along certain links in the 
dimer covering pattern shown in figure 4. 

In table 3 we list the ground-state fermion correlations [(cLc,,)~ at half filling 
for each of the translationally invariant fermion states. In the non-BCS states the 
complex phases of (c!,co) depend on the choice of gauge but the magnitudes are 
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Pigvrr 4. Dimer cuering pattern used in making states with spin-Peierls order. Tbe 
heavy lines reprerent bonds with enhanced spin singlet pairing amplitude. 

translationally invariant and depend only on the flux. The notation of Zeng and 
Elser [6] is used to identify pairs of sites. For example (2 fi) refers to two points, 
0 and n, which are second-nearest neighbours and separated by a distance of fi 
lattice Constants. Notice that the numbers for uniform flux are much more precise. 
That is because the fermion spectrum has a gap and so the Fermi level is clearly 
defined. In the case of BCS states the non-zero correlations are (c?,,cAl). The BCS 
Hamiltonian happens to favour a mean occupancy such that (&c,,) = 0.5. There 
were minor computational problems for the Bcs state with non-zero phases. They led 
to a breaking of translational invariance in the magnitude of pre-projection fermion 
correlations by a few per cent. 

Tabit 3. Magnitude of the fermion correlation function on the Kagom6 lattice I(c,!co)l 
for various pairs of sites in Various preprojedion fermion wavduncrions. For the Bcs 
case (~!,,r!~) is tabulated. See the text for an explanation of the notation used to 
identify pairs of site.  

No Bux 0.5 0.2161 0.0773 0.0389 0.0105 0.0090 0.0220 
Staggered 0.5 0.2169 0.0650 0.0 0.0296 0.0087 0.0579 
Uniform 0.5 0.22478 0.0 0.08804 0.08702 0.01252 0.01042 
BCE (no phase) -0.0833 O . Z O 4  -0.0235 -0.0151 -0.0544 -0.0107 -0.0405 

4. Results 

"ble 4 shows spin-spin correlations between various pairs of sites. In the same 
table are listed the (21-site) cluster-averaged correlations of Zeng and Elser. The 
same notation as table 3 is used to identify pairs of sites. Results for 9- and 12-site 
clusters (shown in figure 5)  are given in order to give an idea of the dependence of 
our results on cluster shape and size. In order to show finite size effects we have 
tabulated both the values of spin-spin correlations between symmetry inequivalent 
pairs as well as the cluster average. If there are two or more inequivalent pairs of 
sites for a given separation these correlations are listed starting from the innermost 
pairs. The projected BCS case was considered on at most a Psite cluster because of 
computational limitations. 
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Table 4, Spin-6pin comlation funclion (St.5;) for varlous pain of sics in various 
projected h i o n  wavefumiom Where there arc inequivalent pain of s ics  at a given 
aeparalion the "elations are liited starting from the innermost pairs. See the t a t  for 
an explanation of the notation uud IO identify pain of sits.  

(1 1) (2 2) (2 fi) (3 2) (3 fi) 
No A l a  (9 sites) -0.0687 -0.0012 0.0132 -0,0019 -0.0007 - - - - -0.0687 

-0.0721 - - - - 
Average -0.0696 -0.0012 0.0132 -0.0019 -0.0007 

No flux (12 sics) -0,0668 -0.0013 0.0129 -0.0036 -0.0001 

Average -0.0693 -0.0013 0.0132 -0.0036 -0.0001 
- - -0.0706 - 0.0135 

Stagged (9 sites) -0.0643 0.0010 0.009 -0.0029 0.0009 

Average -0.0670 0.0010 0.009 -0.0029 0.0009 

Staggered (12 sites) -0.0621 0.0009 0.009 -0.0034 0.0008 

Uniform (9 sits) -0.0665 0.0103 -0.0043 -0.0120 0.0021 

AVeragC -0.0693 0.0103 -0.0043 -0.0120 0.0021 

- - - -0.0660 - 
-0.0717 - - - - 

-0.0682 - 0.010 - - 
Average -0.0662 0.0009 0.0095 -0.0034 0.0008 

- - - - -0.0674 
-0.0758 - - - - 

Uniform (12 sites) -0.0635 0.0103 -0.0036 -0.0090 0.0015 

AVCragc -0.0684 0.0103 -0.0043 -0.0090 0.0015 
BQ (9 sites) -0.0656 0.0055 0.0107 -0.0053 -0.0011 

-0.0708 - -0.0050 - - 

-0.0764 - - - - 
-0.0457 - - - - 

Average -0.0660 0.0055 0.0107 -0.0053 -0.0011 
Small cluster [6] -0.07279 0.01369 0.00974 f0.0004 f0.017 

Figure 5. The 9- and 124te dust= used in projection. 
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The error in estimating, say, the nearest-neighbour correlation of the infinite 
system by the cluster average is not nearly as large as the spread in numerical values 
of correlations between symmehy inequivalent pairs throughout the cluster. That was 
shown by the test on the one-dimensional chain. Moreover on comparing cluster 
averages for the 9- and 12-site clusters in table 4 we see very little difference up to 
second-neighbour correlations. The conclusions of this paper will be based on gross 
qualitative features of these correlations and so will not be sensitive to the small 
errors indicated by the 9- to 12-site cluster comparison. 

AU the trial wavefunctions have reasonably good energy so from that standpoint 
the ground state could have any of the symmetries represented by the trial wavefunc- 
tions. One could imagine adjusting the fermion wavefunctions a little bit to improve 
the energy. However, when other correlations are examined it is clear how these trial 
states differ qualitatively from the ground state. 

The ‘no flux‘ state differs mostly in the (2 2) correlation where it is slightly anti- 
ferromagnetic. The small-cluster result shows a substantial ferromagnetic correlation. 
The ‘staggered flux’ state shows almost no correlation between (2 2) pairs. Looking 
at the thud column of table 3 we see that the lack of ferromagnetic correlations 
may be traced to a large exchange hole in the pre-projection fermion state. In the 
‘staggered flux’ state there is also a bit too much antiferromagnetic correlation at 
(3 2). The ‘uniform flux’ state has antiferromagnetic correlations between (2 6) 
and (3 2) which disagree with small cluster results. Again they can be traced to the 
corresponding fermion correlations. 

Since we were able to trace deficiencies in spin-spin correlations to specitic 
second-neighbour fermion correlations it was natural to try to alter these by includ- 
ing explicit second-neighbour hopping as a variational parameter. After an extensive 
search we were unable to find any combination of second-neighbour hopping which 
improved the energy. 

The projected BCS wavefunction most resembles the ground state. However, it 
is still signilicantly deficient in the correlations (2 2 )  and (3 2). Upon perturbing 
this state by including phases we found that phases strongly increased the amount of 
ferromagnetic correlation in a link and so never helped the variational energy. Pairing 
magnitude perturbations of 10% and 20% were examined. These caused spin-Peierls 
like variations in near-neighbour (Stsf) of roughly 20% and 40% respectively. The 
former perturbation lowered the energy by about one per Cent while the latter did 
not improve the energy noticeably. More significant however is the fact that the 
correlations (2 2) and (3 2) remained unchanged to within &0.001. Small errors may 
affect the comparison of relative variational energies but the order-one discrepancies 
in the above correlations were definitely not k e d  by spin-Peierls order. 

5. Discussion 

One reason why translationally invariant projected fermion trial states may do poorly 
is that the exact ground state on some of the smaller dusters which may be formed 
in the KagomB net are valence bond solids. The five-site ‘hourglass’ cluster is one of 
these. The ground state is sixfold degenerate and has the property that the spins at 
the bottom or top two sites of the hourglass are never parallel. Using this fact one 
can prove that the ground state cannot be formed from the projection of electrons 
in the lowest energy eigenstates of some uniform magnitude hopping Hamiltonian. 
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This feature that the 'hourglass' ground state lacks means that there is no simple 
generalization to the whole lattice. Rokhsar (181 has pointed out that on simple short 
closed loops the exact ground state is obtained by projecting fermions with the right 
amount of flux In that case it is easy to generalize a set of flux rules to the whole 
lattice or understand why flu wavefunctions might work well. Obviously a slight 
complication such as the joining of one pair of next-nearest neighbours ruins this 
picture. Here it is worthwhile to note that the simple uniform flux prescription fails 
badly on the triangular lattice 1191. 

The original motivation for examining the projected fermion states was that they 
represented large-n saddle points. Optimizing a spin state by a large-n mean field 
approach is equivalent to assuming that the nearest-neighbour exchange hole is a 
monotonic function of the kinetic energv of the filled Fermi sea. It is also equivalent 
to assuming that the spin energy is proportional to the exchange hole. There are two 
problems that this approach encounters. Firstly, there is no general relation between 
kinetic energy and exchange. For certain cases-a square lattice with flux 0 or &,/2 
or on the ID chain-the exchange hole is simply proportional to the square of the 
kinetic energy. Perhaps that is why flu states work well there. But there is no 
universal relation. Secondly, although the nearest-neighbour correlation hole is the 
dominant factor in determining the variational energy, the more distant neighbours 
can also affect the nearest neighbour spin-spin correlations resulting after Gutmiller 
projection 

Let us consider what correlations might be missing. The valence bond solid 
perturbation considered did not improve on our projected BCS trial state very much. 
Of course one could impose spin-Peierls perturbations starting from other states. 
Also there are other dimer configurations to consider (Marston and Zeng proposed 
one with an 18-site unit cell-this was too large for us to handle). But we do not 
believe that correlations between certain second- and thud-neighbour spins can ever 
be made more ferromagnetic by spin-Peierls order. 

Another possibility for a missing correlation is insufficient short-range three- 
sublattice N6el order. This particular correlation is not accessable in the SU(n) 
large-n formalism. In a study of the simple flu wavefunction muu on the square 
lattice m [20], Nee1 order was found to be lacking. Because of the classical de- 
generacy mentioned in the introduction, there are different choices of sublattice 
arrangement on the Kagom6 net Based on our numerical results we are able to 
suggest that the sublattice arrangement shown in figure 6 is favoured by quantum 
fluctuations (represented by our projected fermion trial states). The opposite corners 
in every hexagon are in the same sublattice and every sublattice appears in every 
hexagon. The clusters for which the magnetization can he rotated without affecting 
the classical spin energy are linear chains. This choice would make (2 2) and (3 2) 
more ferromagnetic (by the roughly the same amount) while making (2 a) more 
antiferromagnetic It would seem to move these correlations of the no-flux and pro- 
jected Bcs state in the right direction as evidenced by the data in table 4. Projected 
fermion states with Nee1 order were not examined. The presence of three sublattices, 
each with separate magnetization direction, is difficult to deal with. The N6el order 
parameter involves spin-flip terms which essentially doubles the number of fermion 
single-particle correlation functions which need to be considered. 

Finally we address a possible phase transition at finite temperature as suggested 
by Elser's interpretation [2] of the heat capacity data of Greywall and Busch. From 
table 4 one may see that a sudden decrease in the ('2 4) correlation might indicate a 
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F@re 6. Proposed sublallice arrangemen1 for local Nkl  order. 

transition to a chiral spin liquid state as proposed by Marston and Zen& 'Ifansitions 
to other states may also be detected by tracking the appropriate two-spin correlations. 
In this case of flw states the proper order parameter would be SI . S, x S, where 
1,2,3 denote vertices of a triangle. We have not calculated the expectation of this 
threespin operator. 

6. Conclusion 

The projected fermion wavefunctions we have examined have been shown to be 
qualitatively different from the ground state. That implies that the corresponding 
large-n saddle points are not associated with the correct ground state. We have argued 
that the missing correlations appear to be those of short-range Nee1 order rather than 
spin-Peierls order. Nee1 order cannot be implemented in SU(n) theories but can in 
principle be implemented in Sp(n) formalism, although the three sublattices and three 
magnetization axes complicates matters oust as it complicates the evaluation of the 
projected fermion wavefunction). One corollary of our claim is that the ground state 
does not have an excitation energy gap. The large-n saddle point states considered 
here are not candidates for the ground state but might be appropriate for higher 
temperature phases. ?b detect phase transitions to particular states we could track 
the behaviour of particular two-spin correlations. While such correlations are not 
strictly order parameters they are generally easier to measure than higher order spin- 
spin correlations. 
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